Main Page | Namespace List | Class Hierarchy | Class List | File List | Namespace Members | Class Members

multiple_polylog Class Reference

A multiple polylog sum is a special case of a Zsum. More...

#include <multiple_polylog.h>

Inheritance diagram for multiple_polylog:

Zsum harmonic_polylog multiple_zeta_value nielsen_polylog classical_polylog List of all members.

Public Member Functions

 multiple_polylog (const GiNaC::ex &llc)
void archive (GiNaC::archive_node &node) const
void read_archive (const GiNaC::archive_node &node, GiNaC::lst &sym_lst)
void print (const GiNaC::print_context &c, unsigned level=0) const
GiNaC::ex eval (int level=0) const
virtual GiNaC::ex eval_approx (int level=0) const

Detailed Description

A multiple polylog sum is a special case of a Zsum.

Multiple polylogs are in the notation of Goncharov defined by

\[ \mbox{Li}_{m_k,...,m_1}(x_k,...,x_1) = Z(\infty;m_1,...,m_k;x_1,...,x_k) \]

There are two "print" formats available. The default option prints multiple polylogarithms with reversed order of the arguments, as in the definition above. This notation is for example used by Goncharov.

If the flag "print_format::no_reversed_order" in the variable "_print_format" is set, multiple polylogarithms are printed without reversing the order of the arguments, e.g.

\[ Z(\infty;m_1,...,m_k;x_1,...,x_k) = \mbox{Li}_{m_1,...,m_k}(x_1,...,x_k) \]

This notation is used in the french literature.


Member Function Documentation

ex eval int  level = 0  )  const
 

The simplifications are done in the following order:

  • If all $x_j$'s are equal to 1, we have a multiple zeta value.

  • If all $x_j$'s are equal to 1 except $x_1$, we have a harmonic polylog.

Reimplemented from Zsum.

Reimplemented in classical_polylog, harmonic_polylog, multiple_zeta_value, and nielsen_polylog.

ex eval_approx int  level = 0  )  const [virtual]
 

This method provides a simple numerical evaluation routine for multiple polylogarithms.

Multiple polylogarithms are evaluated as power series up to an upper summation limit _NMAX.

This is not a routine designed for performance. It only provides a simple way to check a result for a few selected points.


The documentation for this class was generated from the following files:
Generated on Wed Jun 10 22:59:11 2009 for Nestedsums library by doxygen 1.3.7