Main Page | Namespace List | Class Hierarchy | Class List | File List | Namespace Members | Class Members

harmonic_polylog Class Reference

A harmonic polylog is a special case of a multiple polylog. More...

#include <harmonic_polylog.h>

Inheritance diagram for harmonic_polylog:

multiple_polylog Zsum nielsen_polylog classical_polylog List of all members.

Public Member Functions

 harmonic_polylog (const GiNaC::ex &llc)
void archive (GiNaC::archive_node &node) const
void read_archive (const GiNaC::archive_node &node, GiNaC::lst &sym_lst)
GiNaC::return_type_t return_type_tinfo () const
void print (const GiNaC::print_context &c, unsigned level=0) const
GiNaC::ex eval (int level=0) const

Detailed Description

A harmonic polylog is a special case of a multiple polylog.

Harmonic polylogs are defined by

\[ \mbox{H}_{m_1,...,m_k}(x) = \mbox{Li}_{m_k,...,m_1}(1,...,1,x) \]

There are two "print" formats available. The default option prints harmonic polylogarithms as $\mbox{H}_{m_1,...,m_k}(x)$.

If the flag "print_format::no_harmonic_polylog" in the variable "_print_format" is set, harmonic polylogarithms are printed as multiple polylogarithms, e.g. in the $\mbox{Li}$ - notation.


Member Function Documentation

ex eval int  level = 0  )  const
 

The simplifications are done in the following order:

  • If all degrees are equal to 1 except the first one, we have a Nielsen polylog.

Reimplemented from multiple_polylog.

Reimplemented in classical_polylog, and nielsen_polylog.


The documentation for this class was generated from the following files:
Generated on Wed Jun 10 22:59:10 2009 for Nestedsums library by doxygen 1.3.7