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Problem 7. The Potential Well (20 Points) We consider a one-dimensional square
potential well with �nite depth, described by the potential

V (x) =


0 x < −L

2
,

−V0 −L
2
≤ x ≤ L

2
,

0 x > L
2
.

(1)

(a) Find the equations that determine the energy levels of the symmetric and anti-
symmetric bound states, respectively. In order to do this, solve the time-indepen-
dent Schrödinger equation for the case −V0 < E < 0 in the three regions of constant
potential and use conditions for the continuity and di�erentiability at the boundaries
|x| = L/2. 3P

(b) Use the results of (a) to clarify if there is a minimal depth Vmin of the potential well
required for the existence of a bound state. How many bound states are there in
general for a given depth V0 and mass m of the particle in the potential well? Sketch
the characteristics of the wave function (e.g., its modulus squared) for a typical
solution. 3P

(c) Consider half of the above potential well, i.e. V (x > 0) as above, but V (x < 0) =∞.
Is there, independent of V0, always a bound state in this case? 1P

In the following we want to study the scattering of a particle at a potential well. A solution
of the Schrödinger equation for positive energy E > 0 describing this situation can be
written in the following form:

Ψ(x) =


eik0x + α−e

−ik0x x < −L
2
,

β+e
ikx + β−e

−ikx −L
2
≤ x ≤ L

2
,

Seik0x x > L
2
,

(2)

where k0 =
√

2mE/~ and k =
√

2m(E + V0)/~. This solution describes a plane wave
approaching the potential well from the left, while part of it is re�ected (amplitude α−)
and part of it is transmitted across the well to the right (amplitude S = S(E)). The
quantity S(E) is called scattering amplitude and its modulus squared T (E) = |S(E)|2
is the probability for transmission. The modulus squared of α− is the probability for
re�ection, R(E) = |α−|2.

(d) Using the conditions for the continuity of the wave function and its derivative at
|x| = L/2, determine the coe�cients α−, β+ and β− as well as the scattering ampli-
tude S(E). 3P

(e) Show that the probability for transmission can be written in the form

T (E) =

(
1 +

1

4

V 2

E(E + V )
sin2 (kL)

)−1

(3)



and draw a sketch of its characteristic behaviour as a function of E. Show that the
interpretation of the wave function as a probability amplitude is indeed consistent
by proving that

R(E) + T (E) = 1 . (4)

3P

(f) For which energies En does one observe resonances (T (En) = 1) and what is the
amplitude of the re�ected wave in this case? Calculate the wave length λ = 2π/k
inside the potential well for the resonance energies and compare your result with
the case of bound states in the in�nitely deep potential well. 2P

(g) For positive energies, S(E) is �nite; however, for negative energies there are poles.
Show that poles of S(E) appear at energies which obey one of the following two
equations:

k cot

(
kL

2

)
= −k0 , k tan

(
kL

2

)
= k0 , (5)

where k0 =
√
−2mE/~. Compare these conditions with those for the energy levels

of the bound states of problem part (a). 2P

(h) Expand S(E)−1 in the vicinity of a resonance up to �rst order in (E − En) and
determine, in this approximation, the position of the pole of S(E) of the correspon-
ding pole in the complex E-plane. Show that the probability for transmission in this
approximation follows the pro�le of a Cauchy-Lorentz distribution (non-relativistic
Breit-Wigner distribution)

T (E) ∼ 1

(E − En)2 + Γ2

4

(6)

and determine Γ. The results of this investigation show that resonances can be
considered as almost-bound states with a lifetime approximated by the inverse of
the decay width ~/Γ. 3P
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Please tell us how much time you needed to solve the problems.


