Quantum Field Theory I

Wahlpflichtvorlesung für das Wintersemester 2009/10

Dr. Stefan Berge
Dr. Vladimir Pascalutsa

Teaching assistant: Martin Bauer

Time

Wed. 14:15 - 15:45 Uhr
Fri. 10:15 - 11:45 Uhr

First lecture on Wednesday, October 28th, 14:15 Uhr

Place

Lorentz-Raum (05-127, Staudingerweg 7)

Problem sheets   Lecture notes   Literature

The course is aimed at advanced pre-diploma, diploma, and graduate students specialising in nuclear, particle, or condensed matter physics. The course will be taught in English and will consist of 28 lectures including problem sessions. There will be a written test at the end of the semester.

The following topics will be covered:
  1. Classical fields
  2. Quantization: canonical method
  3. Quantization: functional-integral method
  4. S-Matrix and observables
  5. Perturbative expansion and Feynman diagrams
  6. QED
  7. Loops, Infinities and Renormalization

Problem sheets:

Sheet 01 
Sheet 02 
Sheet 03 
Sheet 04 
Sheet 05 
Sheet 06 

Lecture notes:

Chapter 1 & 2
Chapter 3
Chapter 4
Chapter 5.8 & 6

Literature

[1] Mike Guidry, Gauge Field Theories (Wiley & Sons, New York, 1999)
[2] C. Itzykson and J.-B. Zuber, Quantum Field Theory (Dover Publications, 2006)
[3] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory
     (Westview Press, 1995)
[4] J.D. Bjorken and S.D. Drell, Relativistische Quantenfeldtheorie
[5] Ashok Das, Field Theory - A Path Integral Approach
     (World Scientific Publishing Co. Pte. Ltd., Singapore, 2006)
[6] Steven Weinberg, The Quantum Theory of Fields I
     (University of Cambridge, New York, 1995)