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1 Radiation and matter in gauge theories
and general relativity

The basic structure of gauge theories seems to distinguish radiation from matter as
two categories of different origin. The massive and massless vector or tensor bosons,
the photon, the W±- and Z0-bosons, the gluons, and the graviton, respectively,
which are the carriers of the fundamental forces, belong to what may be termed
radiation. Here we allude to the analogy to (quantum) electrodynamics described
by Maxwell’s equations and to Einstein’s equations for General Relativity (GR).
They are described by geometric theories, i.e. Yang-Mills (YM) theories or, in the
case of GR, by semi-Riemannian geometry in dimension four. To a large extent,
they are classical theories.
Matter, i.e. quarks and leptons and composites thereof, a priori, seems to belong
to a different kind of physics which, at first sight, does not exhibit an underlying
geometrical structure. While the equations of motion of YM theories and of GR,
taken in isolation, describe nontrivial physics, matter cannot "live on its own"
without the gauge bosons that mediate the fundamental interactions – unless one
is satisfied with a theory of free particles which remains untestable in experiment.
As soon as one enters the quantum world, however, the two categories, like two
rivers, start mingling their waters:

(A) The Higgs particle, as a most prominent example of current interest in particle
physics, plays a rather enigmatic role. Its phenomenological role in providing
mass terms for some of the vector bosons and for the fermions of the the-
ory suggests that it be another form of "matter", beyond ordinary matter
made up of quarks and leptons. Models based on noncommutative geometry,
in turn, classify the Higgs field in the generalized YM connection, besides
the gauge bosons, and hence declare it to be part of "radiation". As such,
it generates parallel transport between universes which are separated by a
discrete distance.

(B) The requirement of renormalizability of quantum gauge theories with massive
vector bosons entails the introduction of so-called Stückelberg (scalar) fields
whose place in the classification needs to be clarified.

(C) Quarks and leptons are described by a Dirac operator which in its mass sector
exhibits a significant, though mysterious structure. Dirac operators, in turn,
are the driving vehicles in constructing noncommutative geometries designed
to generalize YM theory – and to describe the standard model! They act on
the Hilbert space which is spanned by the myriad of quark and lepton states.

(D) Quantization of YM theories is possible only in the absence of anomalies.
These, in turn, depend on the classification of the matter particles with
respect to the structure group. In the minimal electroweak standard model,
for instance, it needs a conspiracy between the three generations of quarks
and of leptons to render it renormalizable.
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(E) As emphasized particularly by Scharf and his group, the requirement of BRST
(Becchi, Rouet, Stora, Tyutin) invariance of the underlying Lagrangian fixes
much of its structure and, thereby, intertwines the radiation sector and the
matter sector.

(F) Last not least, the currents and charges of matter or its energy-momentum
tensor act as the sources in the equations of motion of YM and gravitational
fields, respectively.

In these lectures we work out several of the themes alluded to above, both by way
of construction and by means of instructive examples. We start with a schematic
description of YM theories including spontaneous symmetry breaking (SSB) within
the classical geometric framework, and including matter particles. In a first excur-
sion to quantum field theory we describe the stratification of the space of connec-
tions and its relevance to anomalies. In order to clarify the phenomenological basis
on which YM theories of fundamental interactions are built, we describe some of
the most pertinent phenomenological features of leptons and of quarks. Via the
Dirac operator describing leptons and quarks we turn to constructions of the stan-
dard model in the framework of noncommutative geometry. This, in turn leads us
to a closer analysis of the mass sector and state mixing phenomena of fermions.
The intricacies of quantization are illustrated by a semi-realistic model for massive
and massless vector bosons.

1.1 Schematic construction of gauge theories

The backbone of a gauge model is a structure group G which is taken to be sim-
ple or semi-simple. For physical reasons compactness of G is essential, but why?
(Exercise 1). For instance, the electroweak sector of the minimal standard model
(SM) is based on

Gew = U(2) =
{
U ∈M2(C)|U†U = 1l

}
,

which splits into the SU(2) of what we call weak isospin, and the U(1) of weak
hypercharge. As is well-known, the full SM is built on the structure group

G = U(2)× SU(3) ,

with the SU(3) of color interactions included. The model is formulated on a prin-
cipal fibre bundle

P =
(
P

π→M,G
)
,

where, barring relativity for the moment, M = R(1,3) is flat four-dimensional
Minkowski space. The structure group G then is replaced by the gauge group G.
In geometrical terms, this is the group of automorphisms of the principal bundle
P which commutes with the right action Rg of G and which maps every fibre onto
itself, viz.

Ψ ∈ G , Ψ : P → P , (1a)
π (Ψ(z)) = π(z) , Ψ(z · g) = Ψ(z) · g . (1b)
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As Ψ acts on fibres only, one has

Ψ(z) = zγ(z) , z ∈ P , Ψ ∈ G , (2a)
γ : P → G : z 7→ γ(z) , γ(z · g) = Ad g−1 (γ(z)) = g−1γ(z)g . (2b)

Thus, the gauge group G can be identified with the set of maps γ : P → G, so
that (γγ′)(z) = γ(z)γ′(z).
The connection form A ∈ Ω1(P , g) takes values in the Lie algebra Lie G = g. Its
relation to what is called gauge potential in physics is effected by local sections

σi : Ui ⊂M → P ,

such that

A(σi) = σ∗i ω , A(σi) ∈ Ω1(Ui, g) , Ui ⊂M .

Suppose {Ui} is a covering of space-time M , and {(ϕi, Ui)} are the charts of an
atlas describingM . The connection as a whole is then obtained in the usual manner
by joining the chart representations over a complete atlas.

1.1.1 Radiation

On Minkowski space which is flat and simply connected, the construction of the
connection form reduces to1 the definition

A := iq
N∑
k=1

A(k)Tk , N = dim g , (3a)

where the operators Tk are the generators of G, q is a generalized "charge", and
A(k) are one-forms on M = R(1,3),

A(k) = A(k)
µ (x) dxµ , k = 1, 2, . . . , N . (3b)

The functions A(k)
µ (x) are components of the gauge fields, linear combinations of

which will describe the massive or massless vector fields of the SM. For example, if
A

(1)
µ (x) and A(2)

µ (x) denote the coefficients of the generators T1 and T2 of SU(2),
the physical W -fields that mediate weak charged current interactions are given by

W (±)
µ (x) = 1√

2

(
A(1)
µ (x)± iA(2)

µ (x)
)
.

In Exercise 2 one is invited to verify that A is indeed the vehicle which is needed
to perform parallel transport on the principal bundle.
From here on the construction is standard: Local gauge transformations on A are

A 7−→ A′ = gAg−1 + gd(g−1) , g ∈ G . (4)
1The Lie algebra valued one-forms A(k) are real forms. The optional factor i in the defini-

tion (3a) renders the operator A hermitean. This is useful in view of the hermiticity of Lagrangians
or actions in physics.
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The two pieces are seen to be a transformation by "conjugation", well-known e.g.
from quantum mechanics, and a genuine local gauge transformation familiar from a
U(1) theory such as Maxwell theory. Formally speaking, (4) is inhomogeneous and
looks like a (generalized) affine transformation. The one-form A serves to construct
the covariant derivative (cf. Exercise 2)

DA = d + A , (5)

which reads, when applied to some (multiplet of) scalar field(s),

∂µΦ(x)→

{
1l∂µ + iq

N∑
k=1

A(k)
µ (x)Tk

}
Φ(x) .

With respect to gauge transformations the covariant derivative transforms by con-
jugation only, DA′ = gDAg

−1, there is no inhomogeneous term like for A. This is
important for physics: A term such as (DAΦ, DAΦ) where the brackets denote a
G-invariant scalar product, is automatically invariant under local gauge transfor-
mations as well. In other terms, the brackets ensure global gauge invariance with
respect to the structure group G, the covariant derivatives guarantee local gauge
invariance with respect to the gauge group G.
The curvature two-form pertaining to the connection A is given by

F := D2
A = (dA) + A ∧ A . (6)

In contrast to DA itself the action of D2
A ist linear, (Exercise 3). The analoga of

the field strength tensor of Maxwell theory (familiar to physicists) are unveiled in
the decomposition

F := iq
N∑
k=1

Tk

∑
µ<ν

F (k)
µν (x) dxµ ∧ dxν (7a)

in terms of ordinary, antisymmetric tensor fields F (k)
µν (x) and the base two-forms

dxµ ∧ dxν on Minkowski space. If these tensor fieds are decomposed in terms of
the component fields A(k)

µ (x) a new feature appears as compared to Maxwell: The
field strenghts are no longer linear in the Aµ fields,

F (k)
µν (x) = ∂µA

(k)
ν (x)− ∂νA(k)

µ (x)− q
N∑

m,n=1

CkmnA
(m)
µ (x)A(n)

ν (x) . (7b)

Obviously, under a local gauge transformation F , Eq. (6), transforms by conju-
gation, F ′ = gFg−1. The quadratic terms in (7b) which contain the structure
constants Ckmn of the structure group, upon squaring F , lead to cubic and quartic
interactions among the gauge fields. Indeed, the YM Lagrangian which must be a
local invariant with respect to G, has the form

LYM = − 1

4q2κ(ad)
tr (FµνF

µν) , (8)
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where κ(ad) is the normalization of the trace

tr (TiTj) = κ δij (9)

in the adjoint representation (Exercise 4).
The result (8) shows that a world containing vector bosons only contains nontrivial
physics. Suppose, for example, that the Lagrangian (8) describes the photon γ,
the Z0-boson and the charged W±-bosons. (Of course, a mechanism is needed,
in addition, which renders some of these massive and thereby defines the specific
linear combinations of neutral fields which describe the photon and the Z0.) The
Lagrangian (8) produces well-defined coupling terms between these particles. For
instance, the WWγ-vertex fixes the anomalous magnetic moment of the W+ and
W− which, at least in principle, can be measured in scattering experiments. Other,
perhaps more prominent and better known examples are provided by the three-
and four-gluon vertices of quantum chromodynamics (QCD) which are tested in
jet dynamics at e+e−-colliders.

1.1.2 Matter

While the principle of local gauge invariance based on a group G fixes the structure
of the vector boson sector to a large extent, the introduction of scalar or fermionic
matter fields leaves much more freedom of choice. As a first and well-known exam-
ple, consider the original Higgs mechanism applied to the electroweak sector of the
SM, based on the structure group G = U(2) ≈ U(1) × SU(2). The aim is to hide
the original symmetry group G in favour of the residual symmetry H of Maxwell
theory

G = UY (1)× SU(2) −→ H = Uem(1) (10)

by spontaneous symmetry breaking (SSB), where the Uem(1) is an appropriate
linear combination of the original UY (1) and the one-parameter subgroup gener-
ated by the operator T3 of SU(2). For that purpose one introduces a multiplet of
scalar fields Φ, classified by quantum numbers y and (t, t3) of weak hypercharge
U(1)Y and weak isospin SU(2), respectively, as well as a G-invariant potential
V (Φ) which exhibits a degenerate minimum at some nonvanishing value φ0. The
freedom of choice is reflected by the fact that the multiplet Φ can sit in almost
any multiplet of weak isospin t ≥ 1

2
provided it contains one substate (y, t, t

(H)
3 )

which is electrically neutral such that it develops a vacuum expectation value
v =

√
(φ0, φ0) 6= 0. The weak hypercharge of "the" Higgs scalar is y = 1, its

weak isospin is (t, t
(H)
3 ) = (1

2
,−1

2
) so that its electric charge Q = t3 + 1

2
y vanishes.

However, there is nothing up to this point that would tell us that the Higgs lives
in a doublet with respect to SU(2). All one can deduce from the construction of
the minimal electroweak SM is the relation (for a derivation of this formula see
the appendix)

m2
W

m2
Z cos2 θW

=
t(t+ 1)− t23

2t23
(11a)
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which contains three experimental numbers on its left-hand side2: the masses of
W and Z, and the squared cosine of the Weinberg angle θW. The derivation of the
ratio (11a) is given in the appendix. Strangely enough, it is experiment that tells
us that the ratio on the left-hand side of (11a) is equal to 1 within a very small
error bar,

m2
W

m2
Z cos2 θW

∣∣∣∣
exp

= 1.0004 +0.0008
−0.0004 , (11b)

a value which singles out the doublet case. This reminds one of earlier days of
nuclear spectroscopy when people determined spins and parities of nuclear excited
states by angular correlations. Clearly, it would be more satisfactory if this as-
signment were a prediction! In fact, as we shall discuss below, extensions of YM
theories within noncommutative geometry put the Higgs into the radiation sector
and fix its quantum numbers to the values favoured by (11b).
The introduction of fermionic fields such as those describing quarks and leptons
also follows standard rules. Like in the example discussed above, there is much, and
in fact too much, freedom of choice for the corresponding Dirac operator(s). Let
Ψ(x) be a set of fermionic fields classified by a reducible or irreducible represen-
tation of G. For definiteness, think of the weak isospin and QCD part of the SM,
G =SU(2)×SU(3). The U(1) part is always more problematic than the nonabelian
factors because it escapes universality of couplings (Exercise 5). A (still classical)
Lagrangian including a scalar multiplet of fields Φ and a fermionic multiplet Ψ
which is both globally and locally gauge invariant will have the form

L = − 1

4q2κ(ad)
tr (FµνF

µν) + 1
2

(DAΦ, DAΦ)− V (Φ)

+ i
2

(
Ψ, γ ·

↔
DA Ψ

)
−
(
Ψ, (M + %Φ) Ψ

)
. (12)

Here, as before, DA denotes the covariant derivative so that, for example, γ ·DA

stands for γµDµ(A), and V (Φ) is the Higgs potential,

V (Φ) = λ
4

{
(Φ,Φ)− v2

}2
+ const. (13)

(The left-right action of the derivative means f
↔
∂µ g = f(∂µg)− (∂µf)g.)

The last term in (12) is not as innocent as it looks at a first glance. The term M
contains the mass matrices of quarks and of leptons, of unknown origin, which are
certainly not diagonal in the base states of the representation Ψ of G. The term
proportional to the real number % is a Yukawa coupling of the fermions to the Higgs
field which will contribute to the fermion masses through the one component φ0

which develops a vacuum expectation value. Of course, either of these terms can
be present only if the factors composing them join in a G-invariant manner. For

2I am skipping a discussion of radiative corrections which appear in the left-hand expression
of (11a) if one uses bare values for the input parameters. This is a standard topic in the discussion
of the minimal SM and the rules for including them are well known, see, e.g., the review on the
electroweak model [1], p. 125.
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instance, in the minimal electroweak SM and with one generation of leptons one
has

Ψ(x) =

[
L(x)
R(x)

]
, where L(x) =

[
νL(x)
eL(x)

]
and R(x) =

[
eR(x)

]
are a left-handed doublet with y = −1 and a right-handed singlet with y = −2.
(Verify the electric charges!) As there is no way of constructing a mass term
(Ψ̄,MΨ) invariant with respect to G, one must rely on the Yukawa coupling for
giving the electron a mass. This implies that the parameter %, for every fermion,
must be tuned such as to yield the empirical mass.

1.2 Mysteries of leptonic interactions

Both the world of quarks and the world of leptons contain a great deal of inner
structure which is accessible in experiment but is not understood by any means.
Among a longer list of mysteries in this realm we discuss two aspects of special
relevance to geometric theories of particle physics.

1.2.1 Chiralities in weak charged-current interactions

One of the great mysteries of lepton physics is the observation that charged weak
interactions couple to purely left-chiral states only. As long as the three neutrinos
were thought to be strictly massless, it was more or less plausible that only neu-
trino states with negative helicity, and antineutrino states with positive helicity
participated in weak interactions, while states with the opposite helicity did not
couple to anything. Helicity plus or minus one-half is an invariant characterization
only if the fermion is massless. Furthermore, the occurrence of one state of helicity
only is linked to the observed maximal parity violation in weak interactions.
For comparison, consider the interaction of photons with charged particles. A good
example is the production process

e+ + e− −→ µ+ + µ−

via annihilation of the e+e−-pair into a virtual photon, and the creation of the
µ+µ−-pair by annihilation of the same photon. Suppose the colliding electron and
positron beams are unpolarized but the orientation of the spins of µ+ and µ− along
the momenta or opposite to them are recorded. The spin selection rules (Exercise 6)
tell us that the chiralities of the positive and the negative muon are correlated: If
the µ+ is right-chiral then the µ− is left-chiral, but if the µ+ is left, the µ− is right.
Electromagnetic interactions are strictly parity-conserving that is to say the two
chirality constellations couple with the same strength to the intermediate photon
state. As a result, the emerging µ+µ−-pair, like the incident e+e−-pair, will be
found to be unpolarized. In fact, the analogous process with τ -leptons,

e+ + e− −→ τ+ + τ− ,

is used to produce beams of polarized τ− by selecting one definite chirality state
of its partner τ+.
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In the meantime we have learnt that at least some of the neutrinos do have nonva-
nishing masses, and, therefore, one might expect that handedness no longer plays
a fundamental role. In other terms, models which contain some right-handed weak
interactions, besides the dominant left-handed ones, such as left-right symmet-
ric models with appropriate SSB, might describe reality. That this is not so is
demonstrated by a beautiful determination of the chirality of the ν̄µ. This striking
example goes as follows [2]. Muon beams usually stem from charged pion decay,
π− → µ−+ ν̄µ, as illustrated by figure 1 (see also Exercise 7). As this decay is medi-

π

µν

ν

−

µ

µ µ +

+

π−

Figure 1: Weak decays of π− (π+) into µ− (µ+) and ν̄µ (νµ)

ated by weak charged interaction which are parity violating, the muon is expected
to be longitudinally polarized. Let Pµ be its degree of longitudinal polarization.
The negatively charged muon decays predominantly via the process µ− → e−νµν̄e.
The decay asymmetry of the electron with respect to the muon spin and close to
the upper end of the spectrum is calculated to be(

d2Γ

dx d cos θ

)∣∣∣∣
x→1

=
m5
µG

2
F

144π3

{
1− Pµ

ξδ

ρ
cos θ

}
, (14a)

where x = E/Emax, θ is the angle between the muon spin and the electron momen-
tum, while ρ, ξ, and δ are real parameters which are calculated from the couplings
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in a general weak interaction Lagrangian [3] but whose explicit form is of no rele-
vance here. Obviously, the absolute value |Pµξδ/ρ| cannot exceed the value 1. The
experimental result of Jodidio et al. [4]

Pµ
ξδ

ρ
= 0.9989± 0.0023 (14b)

is found to be very close to its maximal value 1. By definition, the longitudinal
polarization Pµ cannot be larger than 1. One concludes that both Pµ and the
combination ξδ/ρ must each lie very close to 1. The result for the former has an
immediate consequence for the chirality of the ν̄µ of the antineutrino emitted in
pion descay, by conservation of angular momentum. As worked out by Fetscher [2],
the experimental result (14b) implies

1− |h(ν̄µ)| < 0.0032 at 90% C.L. . (14c)

The signs of h(ν̄µ) and h(νµ), which are opposite of each other, are known from
experiment. Therefore, the result (14c) is convertible to the information

h(ν̄µ) = +1 and h(νµ) = −1 , (15)

within very small error bars. This is, by far, the most accurate determination of a
neutrino chirality.

1.2.2 Family numbers and selection rules

Another mystery is the separate additive conservation of individual lepton family
numbers Le, Lµ, and Lτ . Soon after the minimal SM of electroweak interactions
was developed one realized that it could easily accommodate any number of copies
of the (e, νe) family as well as arbitrary amounts of state mixing between members
of different families. The same statement applies to the quark sector (see below).
Here again, the geometry of the SM provides almost no constraint on how fermion
multiplets should be added to the bosonic sector, except for the well-known con-
spiracy in the electric charges and numbers of generations and colors needed to
cancel chiral anomalies (see Sect. 3.1 below).
There is a wealth of data supporting the conservation of individual family numbers,
see, e.g., the compilation in the review Tests of Conservation Laws in [1]. I quote
here three prominent examples which show the impressive degree of accuracy to
which these conservation laws are known, viz.

Γ(µ− → e− + γ)

Γtotal

< 1.2× 10−11 at 90% C.L. , (16a)

Γ(µ− → e− + e+ + e−)

Γtotal

< 1.0× 10−12 at 90% C.L. , (16b)

σ(µ−Ti→ e−Ti)

σ(µ−-capture on Ti)
< 4.3× 10−12 at 90% C.L. . (16c)

The first of these compares the rate of a hypothetical "radiative decay" from the
muon to the electron with the total decay rate, where the latter is dominated by
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the allowed process µ− → e−+νµ+ ν̄e. Indeed, the eigenvalues of Le and Lµ in the
decay µ− → e−+ νµ + ν̄e and their additive conservation give (Le = 0, Lµ = 1) for
the left side, and (Le = 1− 1, Lµ = 1) for the right side. The decay µ− → e− + γ,
in turn, would lead from (Le = 0, Lµ = 1) to (Le = 1, Lµ = 0) which is forbidden.
The decay (16b) differs from the one of (16a) by the photon of (16a) moving off
its mass shell and dissociating into an electron-positron pair. The process (16c),
finally, compares the cross section for neutrinoless capture of a muon on a nucleus,
yielding an electron and the same nucleus in some excited state, with ordinary
muon capture where one has a muon neutrino in the final state.

2 Mass matrices and state mixing

In the minimal SM the fermionic states which participate in weak charged-current
interactions do not coincide with the eigenstates of mass which couple to the
electromagnetic and, in the case of quarks, the strong interactions. Therefore, a
certain amount of state mixing becomes observable in weak interaction processes.
This phenomenon has been studied in great detail and over many years for the three
generations of quarks. Qualitatively the same phenomenon is known in neutrino
physics through oscillations of neutrino states, although on a quantitative level
things are very different.

2.1 The case of quarks

The quark states with electric charge +2
3
and the states with electric charge −1

3

which couple to (charge changing) weak interaction vertices are not identical with
the states that occur in strong interactions. The states which couple to weak
vertices are "rotated" as compared to the mass eigenstates which are the ones
coupling to gluons in QCD. The mixing matrix, called CKM-matrix (after its
discoverers N. Cabibbo, M. Kobayashi, and K. Maskawa), is a unitary 3 × 3-
matrix four parameters of which are observables. The mixing matrix, in the case
of quarks, is close to diagonal. In the analogous case of leptons it seems to be
far from diagonal. There are few restrictions on the admissible mass matrices in a
given charge sector which are to be inserted in their Dirac operator. In particular,
they need not be hermitean. We shall assume that they are nonsingular. Once the
mass matrices are given, their diagonalization yields the mixing matrix and, of
course, the mass eigenvalues,

Mass matrices of up and down quarks =⇒ CKM-matrix.

That part of the analysis is trivial. What about the converse?
Suppose the mass eigenvalues and the empirical mixing matrix are given. What is
the space of mass matrices which are compatible with these data? Can one define
parameters that help to sweep the space of admissible mass matrices?
The information on the quark masses is the following [1]: The set of up-like quarks
ui, charge q(u) = +2

3
, have the masses

mu = 1.5 to 3.3 MeV , mc = 1.27± +0.07
−0.11 GeV , mt = 171.3±1.1±1.2 GeV . (17a)
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The down-like quarks di, with charge q(d) = −1
3
, are known to have the masses

md = 3.5 to 6.0 MeV , ms = 105± +25
−35 MeV , mb = 4.20 +0.17

−0.07 GeV . (17b)

Regarding the CKM-matrix different conventions for its representation are possi-
ble. What is relevant for the problem posed above is the fact that it depends on
four real physical parameters, say three mixing angles and one phase (describing
CP-violation), all of which are known from experiment.
The key to the inverse analysis is the observation that weak charged-current inter-
actions couple to left-chiral fields only. The right-chiral fields remain unobservable.
In the reconstruction of all mass matrices which are compatible with a given set
of data (masses and mixing) one makes use of the complete freedom of choice
of right-chiral fields. Furthermore, a simultaneous unitary transformation of the
left-chiral fields of charges +2

3
and −1

3
leaves the observables unchanged. In more

detail: Let M (q), q = u and q = d, be arbitrary, nonsingular mass matrices for
the group of up-like and down-like quarks, respectively. They are diagonalized by
bi-unitary transformations of left- and right-chiral fields,

U
(q)
L M (q)U

(q) †
R = ∆(q) , ∆(q) = diag (m

(q)
1 ,m

(q)
2 ,m

(q)
3 ) q = u, d . (18)

As is well known, the unitary matrices U (q)
L diagonalize the hermitean, "squared"

mass matrices M (q)M (q) †, while the unitaries U (q)
R diagonalize M (q) †M (q). The

CKM-matrix is given by the product of the left unitaries in (18), i.e.

VCKM = U
(u)
L U

(d) †
L . (19)

The most general transformation of the mass matrices which leaves this matrix
invariant reads

U †M (q)V (q) , q = u, d = M̂ (q) , (20)

where U , V (u), and V (d) are arbitrary unitary matrices. Note that the unitary
matrices V (u) and V (d) act on right-chiral fields and, hence, are independent of
each other. The unitary matrix U acts on the left-chiral fields and, hence, must be
the same in the two charge sectors.
The most economic reconstruction procedure makes use of the polar decomposition
theorem for nonsingular matrices [5] (Exercise 8).
Any nonsingular M can be written as a product of a lower- (or upper-)triangular
matrix T and a unitary matrix W ,

M = TW with T lower triangular, W unitary . (21)

The decomposition is unique up to multiplication of W from the left by a di-
agonal unitary matrix diag (exp{iω1}, . . . , exp{iωn}). Closer inspection shows the
intimate relation of this theorem to Schmidt’s orthogonalization procedure well-
known, e.g., from quantum mechanics.
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Since W acts on right-chiral fields and, hence, is unobservable, the essential infor-
mation on a given mass matrix is contained in the triangular factor, viz.

T (u) or T (d) =

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

 ,

where asterisks denote possibly nonvanishing entries. This form still covers the
most general case. Contact to more conventional representations is made by tak-
ing the hermitean "squares", Ĥ(q) = T (q)T (q) † whose eigenvalues are the squared
masses,

Ĥ(q) = M (q)M (q) † = T (q)T (q) † = U †D̂(q)U , (22a)

D̂(q) = diag (m
(q) 2
1 ,m

(q) 2
1 ,m

(q) 2
1 ) .

More specifically, by an appropriate choice of basis, one obtains the representations
in the up- and down-sectors

Ĥ(q+1) = U †D̂(q+1)U , (up sector) , (22b)

Ĥ(q) = U †VCKMD̂
(q)V †CKMU , (down sector) . (22c)

As we showed earlier [6] the matrix U is known analytically. Given the masses and
the mixing matrix the remaining freedom in choice of the unitary U is contained in
two complex parameters which, in turn are constrained by a quadratic equation [7].
That is to say, the freedom eventually reduces to one complex parameter (or
two real parameters). While this parameter runs through its domain of definition
(bounded by a circle with radius R =

√
(m2

t −m2
u)/(m

2
t −m2

c) about the origin)
one sweeps the space of admissible quark mass matrices.

Remark: Earlier analyses such as [8] made use of what was called the nearest-
neighbour interaction (NNI) by assuming, from the start, the mass matrices
to have the form

M̂ =

0 ∗ 0
∗ 0 ∗
0 ∗ ∗

 .

There were two intuitive physical ideas behind this ansatz:
(i) initially, before interactions are switsched on, only the third generation
has a nonvanishing mass;
(ii) only immediate neighbours are allowed to interact.
Unfortunately intuition was misled, this picture is ill-defined because any set
of matrices M (q+1), M (q) can be brought to NNI form, just by choosing the
bases of chiral states appropriately. In other words, the NNI representation
still covers the most general case. Furthermore, if the same ansatz is con-
verted to the triangular representation by the decomposition Eq. (21) then
one sees that now it is the i = 2, k = 1-element that vanishes, T̂ (q)

21 = 0. This
certainly is counter-intuitive because it might suggest that there is no direct
interaction between the first and the second generations, while in the first
ansatz they seemed to interact strongly.
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Since then, Häußling found an alternative procedure [9] which is technically much
simpler than our earlier analysis [7]. He shows that the unobservable right-chiral
fields can be chosen such that one arrives at the following representation:

∆(u)VCKM∆(d) = M̂ (u) †M̂ (d) , (23a)

M̂ (u) = V∆(u) and M̂ (d) = M̂ (u)∆(u)−1VCKM∆(d) , (23b)

M̂ (d) = M̂ (u)∆(u)−1VCKM∆(d) . (23c)

Here the mass matrices M̂ (q), q = u, d, have rows whose squared norm is m2
ui

or
m2
di
, respectively, while any two different rows are orthogonal to each other. The

matrix V is an arbitrary unitary. Note that the left-hand side of (23a) contains
the experimental input. Thus the product M̂ (u) †M̂ (d) can be determined from
experiment. By varying the unitary V one reaches all mass matrices compatible
with experiment. Eq. (23c), finally, yields a linear relationship between the up
and the down sector. The "constant of proportionality" is the experimental input
∆(u)−1VCKM∆(d).
A few comments on these results are the following

1. All formulae in the analysis [7] are explicit, fairly simple, and can be studied
in a transparent manner as a function of the one complex parameter on which
they depend. This appears to be the best one can do in reconstructing the
mass matrices from the data (mass eigenvalues and observed mixings).

2. That parameter represents, so to speak, "the heart of the matter". The NNI
representations are the most rational representations. Therefore, any spe-
cific model that is proposed for the quark mass matrices can be tested by
converting them to that class of bases and checking for compatibility.

3. The more recent analysis by Häußling [9], of course, is compatible with the
NNI representation but presents the advantage of reconstructing all mass
matrices, up to equivalence due to allowed but unobservable unitary transfor-
mations. To quote an analogy: the one-parameter NNI setting is like singling
out a specific representative state ψ of a quantum mechanical ray, while the
general method yields the whole ray {exp iαψ}. This is true as long right-
chiral fermion fields remain unobservable in weak interactions.

4. Matters would change immediately if one discovered additional interactions
which were sensitive to left- and right-chiralities in a physically relevant way.
Then the "freedom of phases" decribed in the preceding remark, is lost.

5. It is a matter of convention whether one takes the mass matrix of up-type
quarks to be diagonal and assumes that the mixing occurs in the down-sector
only. Our analysis above shows that the mixing can be shifted to either one
of the two charge sectors, or be distributed over both.
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2.2 The case of leptons

Everything that was said about quarks in Sect. 2.1 also holds for the three gener-
ations of leptons(

νe
e−

)
,

(
νµ
µ−

)
, and

(
ντ
τ−

)
. (24)

In defining the charge −1 and charge 0 states that participate in (charge chang-
ing) weak interactions, with reference to the mass eigenstates, one is free to assume
neutrino states to be mixed, or electron-like states to be mixed, or even a com-
bined configuration where both charge sectors mix. The electromagnetic and weak
neutral interactions are diagonal in the flavours and, therefore, are insensitive to
mixing described by unitary matrices. Unfortunately, although the masses are bet-
ter defined than for quarks the experimental information on neutrino masses and
mixing is much more scarce. The present state of knowledge is as follows [1] (for a
more detailed discussion see the review [10]):

∆m2
21 = (7.59± 0.20)× 10−5 eV2 ,

sin2(2θ12) = 0.87± 0.23 ,

∆m2
32 = (2.43± 0.13)× 10−3 eV2 , (25)

sin2(2θ23) > 0.92 ,

sin2(2θ13) < 0.19 , at C.L. = 90% .

As such, these data are not sufficient for an analysis of the kind discussed above.
Nevertheless, there are certain patterns as well as specific models that were pro-
posed by various people (including the autor) and it might be worthwhile to check
them for internal consistency in the general framework developed for quarks.

3 The space of connections and the action functional

As we emphasized previously in Subsect. 1.1, although meant to describe quantum
field theories, the construction of nonabelian gauge theories seems to be a purely
classical construction. The remaining three sections will show that this is not really
true for several reasons. First, one can show that not every classical YM theory,
after quantization, becomes a viable theory. Second, it may be that YM theories
are embedded in the more restrictive framework of noncommutative geometry so
that, again, not every structure group can be "gauged" and be converted to an
acceptable quantum YM theory.

3.1 The axial anomaly, a reminder

A class of obstructions that were known already very early through the work of
Adler, Bell, Jackiw, and others, concern local and global anomalies. For example,
the renormalizability of the minimal electroweak SM is threatened by the triangle
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anomaly involving an axial current. The axial vector part of the fermionic current

aµ =
∑

f=e,µ,τ

Ψf (x)γµγ5U(Y )Ψf (x) +
3∑
q=1

3∑
c=1

Ψq,c(x)γµγ5U(Y )Ψf (x)q, c (26)

which couples to the gauge field A
(0)
µ (x), produces an anomaly in its divergence

which is proportional to

S = Sleptons + Squarks with

Sleptons =
∑
e,µ,τ

tr {U(TmTmY )} and Squarks =
∑
q,c

tr {U(TmTmY )} , (27)

where Tm is a component of weak isospin and U denotes the respective fermion
representations. The sums run over the three generations of leptons and quarks,
and, in the case of the quarks, over the colour quantum number. Note that only
isospin doublets contribute and that it is sufficient to consider the component
m = 3 only. Then, marking the factors three from flavour and from colour, one
finds

Sleptons = 3f ·
1

4
· (−2) = −3

2
, Squarks = 3f ·

1

4
· 3c ·

2

3
=

3

2
, (28)

whose sum vanishes indeed. Thus, the electroweak SM is safe only if there is
this conspiracy between the lepton families and the quark multiplets. We note in
passing that the factor three which stems from the colour degrees of freedom, is
essential in explaining the absolute magnitude of the amplitude for π0 → γγ decay.

3.2 Geometric route to anomalies

It is well-known that anomalies occur at the order ~, i.e. at the level of one-
loop diagrams. This may be the reason why they can be identified also within
the geometric approach [11, 12], beyond the algebraic analysis sketched above.
Without going into details let me describe the essence of this approach by the
following somewhat sketchy remarks. A more detialed account can be found in the
papers quoted above and in [13].
A given YM theory is formulated on a principal fibre bundle

P =
(
P

π→M,G
)
. (29)

Both the gauge group G which is the group of vertical automorphisms on P , and
the space A of connections on P are infinite dimensional. The space of connections
is an affine space and, hence, is mathematically simple. From the point of view of
physics, the space A contains by far too much freedom. Physics can only depend on
gauge potentials which are not gauge equivalent. So, roughly speaking, the space
of connections should be divided into classes of gauge-equivalent connections and
only these classes should appear in the action. Now, the action of the gauge group
G on A, in general, is highly nontrivial so that

M := A/G (30)
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is a rather complicated object which, in general, is not a manifold. In other words,
brute-force division by the gauge group is dangerous and, perhaps, not even possi-
ble. The action functional, integrated over the fermions, is formulated on A. On the
other hand, the effective functional must depend only on the gauge-inequivalent
connections.
A more gentle way of performing this division is to do it, if possible, stepwise. For
that purpose one studies the stratification of A by the action of the gauge group,
so that it is decomposed as follows

A = A(J0) ∪ A(J1) ∪ · · ·A(Jk) , (31a)

where the individual stratum is characterized by the stability group GA of its
elements A being conjugate to Ji, i = 0, . . . , k. That is to say

A(Ji) =
{
A ∈ A|GA = ψJiψ

−1 , ψ ∈ G
}
. (31b)

Here Ji is isomorphic to a subgroup of the structure group G. The number of strata
is countable. The main stratum (index J0) is characterized by J0 isomorphic to the
center C of G. The stratification (31a) is unique and natural once the framework
is defined by giving P(M,G). The formal definition

Mi = A(Ji)/G

yields an orbit bundle decomposition which bears some similarity to the compacti-
fication procedure in Kaluza-Klein theories. The spacesMi are parts of the space
of physical, gauge-inequivalent connections. The trouble is that, in general, they
cannot be joined to a smooth manifold.
Physics comes in via an action functional S(A, ψ̄, ψ) which is a classical functional
and is strictly gauge invariant. At the quantum level the central quantity is the
generating function

Z(A) =

∫
[Dχ][Dχ̄] exp{−(S + χ̄ /∂A χ)} (32)

obtained while integrating the fermionic degrees of freedom. There are two possibil-
ities. Either Z(A) is strictly invariant under a gauge transformation ψ, Z(ψA) =
Z(A), or it is equivariant but not strictly invariant, Z(ψA) = %−1(A,ψ)Z(A),
where % is the action of the gauge transformation. In the first case one can safely
divide by the gauge group to obtain a perfectly acceptable functional. The theory
has no anomaly and can be reduced to the spaceM of gauge-inequivalent connec-
tions. In the second case, in contrast, there must be anomalies, the reduction is
not possible. Therefore, in the geometric framework anomalies are obstructions to
the reduction procedure which are due to quantization.
Without going into further, mostly technical details, let me sketch a constructive
way of identifying anomalies in this geometric setting. One well-known ansatz is
to make use of what is called the pointed gauge group G∗. This is the subgroup
of G which is the stability group of an arbitrary but fixed point p0 of the principal
fibre bundle P(M,G),

G∗ = Gp0 = {ψ ∈ G|ψ(p0) = p0} . (33)
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In other terms the pointed gauge group acts like the identity in the fibre over p0.
Singer showed that the action of G∗ on A is free [14]. Therefore,

G∗ −→ A

↓
M∗ = A/G∗

is a principal fibre bundle. The functional Z(A) is a trivial section

Z : A −→ Det := A× C (34a)

in the determinant bundle. If one divides by the pointed gauge group one obtains
the reduced section

Z∗ : A/G∗ −→ (A× C) /G∗ =: Det ∗ . (34b)

If Z(A) is strictly invariant then the action of G∗ on C is trivial so that (34b)
reduces to

Z∗ : M∗ −→M∗ × C , M∗ = A/G∗ . (34c)

In turn, if Z(A) is equivariant but not strictly invariant then the action of the
pointed gauge group on C is not trivial. In this situation Det∗ has a twist, the
integration over [DA] is not possible. Geometrically speaking there is a topological
anomaly.
Even if no such anomaly is encountered, the story is not finished. There remains the
"division" by the remainder G/G∗ which is isomorphic to the structure group G.
This last step is particularly important because it is the structure group which
defines the conserved charges of the theory. Again, if Z∗ is strictly invariant the
final division poses no problem. If it is not but is (only) equivariant one obtains

Z∗∗ : M−→ (M∗ × C) /G =: Det∗∗ , (35)

the functional Z∗∗ is nontrivial, and one has found an anomaly.
In summary, by following this geometrical method one identifies all topological as
well as possible global, nonperturbative anomalies. More on this can be found in
the references given above.

4 Constructions within noncommutative geometry

The reconstruction of the minimal SM as well as of more general gauge and grav-
itational theories by means of noncommutative geometry is of geometrical origin
but goes far beyond the classical framework of local gauge theories. The class of
admissible gauge groups is restricted, spontaneous symmetry breaking (SSB) oc-
curs as a rather natural phenomenon, and at least part of what we observe in the
matter sector obtains a geometrical backbone. There are essentially three lines of
proceeding that were explored extensively:
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(i) The construction of the action by means of Dirac operators as advocated by
A. Connes and his collaborators,

(ii) The somewhat more empirical construction within the Mainz-Marseille model,
and

(iii) the numerous programs of formulating quantum field theory on noncommu-
tative spaces as pioneered by Madore, Grosse, Wulkenhaar, and others.

I do not talk about the third group which, in fact, would cover a series of lectures
of its own. Instead, I briefly highlight the constructions (i) and (ii) but without
going into much detail.

4.1 Spectral triples and all that

The original construction of the standard model by A. Connes and J. Lott [15]
lead rather naturally to SSB with a Higgs potential whose parameters were func-
tions of the quark masses. Thus, for a while it seemed as though the essential
parameters of the minimal SM (Weinberg angle, Higgs mass) could be predicted.
This, however, was not successful [16]. Furthermore, the model struggled with the
correct assignments regarding additive quantum numbers. A much more ambitious
approach was proposed later by A. Chamseddine and A. Connes [17] by postulat-
ing the Spectral Action Principle. In both approaches the Dirac operator D plays
the central role. The spectral action principle asserts that the operator D is all
that is needed to define the bosonic part of the action. Since the disjoint union of
spaces corresponds to direct sums of Dirac operators, the action functional - which
is determined by D - must be additive and, hence, must have the form

S = tr (f(D/Λ)) , (36)

where f is an even function of its real variable, and Λ is a parameter which fixes
the mass scale. The theory is determined by a spectral triple (A,H, D) containing
a ∗−algebra A, a Hilbert space H, and a Dirac operator D, A and D being
represented on Hilbert space. Of course, matters are not as simple as that. In fact
the spectral triple rather is at least quintet because further data are needed to
define it. The simplest realistic example, in terms of physics, is

(C∞(M), L2(M,S), /∂) , (37)

withM a compact oriented spin manifold. Here the algebra is the algebra of smooth
functions on M and is commutative. The Dirac operator reduces to the ordinary
partial derivatives. In view of the SM, in turn, one chooses the data to be

A = C∞(M)⊗AF , (38a)
H = L2(M,S)⊗HF , (38b)
D = /∂ ⊗ 1lF + γ5 ⊗DF . (38c)
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The algebra AF is finite and is chosen to be [18]

AF = C⊕HL ⊕HR ⊕M3(C) . (39)

A connection is introduced into this model by replacingD by the covariant operator

D −→ DA = D + A+ JAJ−1 (40)

Implementing charge conjugation properly - and this applies to all NC models -
needs special consideration as was first noted in [19]. The operation J , called reality
structure, which was introduced later, does this job in Connes’ framework. With
the choices (38a)–(38c) the connection is

A = γ5 ⊗ Φ− iγµ ⊗ Aµ , (41)

where Φ is a scalar field on M which takes values in AF , whereas Aµ pertains to
a one-form which takes its values in the Lie algebra Lie (U(AF )). (Note that the
structure group must be found in a unitary subalgebra of AF . This limits the class
of structure groups which one can reproduce in this way.)
Of course, there is much more to be said about this fascinating theoretical frame-
work. It provides an interesting ansatz for combining YM theories with gravity and
there are branches of it exploring various directions. Its weakness, from a physi-
cist’s point of view, is the Euclidean framework. Although there were attempts to
generalize spectral triples to Minkowski signature, there still are no satisfactorey
answers. Our short excursion may be sufficient to illustrate our main assertion:
noncommutative geometry brings in more structure into gauge theories of funda-
mental interactions.

4.2 The bosonic sector à la Mainz-Marseille

The Mainz-Marseille model is a more heuristic construction but, I claim, is closer
to phenomenology because it is formulated on Minkowski space with the right
causal signature from the start and because it contains less freedom than other
models. Instead of a detailed exposition of the model and of what it can do and
what not, I illustrate its salient features by three items.
The model is based on a bi-graded differential structure by composing the exterior
algebra onM4 (Minkowski space) and a graded Lie algebra akin to the electroweak
structure group U(2) [19], [20]. In the minimal case, the graded algebra is chosen
to be

SU(2|1) =
{
M|M† = −M , Str M = 0

}
, (42)

the symbol Str denoting the super-trace. In the defining representation these ma-
trices have the form

M =

∗ ∗| ∗∗ ∗| ∗
∗ ∗| ∗

 ≡ (A2×2| C1×2

D2×1| B1×1

)
. (43)
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The blocks along the diagonal are even with regard to the algebra grading in (42),
the blocks which sit off the main diagonal, are odd. (In this representation the
super-trace is Str M = tr A −B.) In terms of generators of the graded Lie alge-
bra (42) the ones in the even part must be the Tk of SU(2) and T0 (or Y ) of the
U(1) factor. The odd generators, in turn, sit in the off-diagonal blocks.
A rather natural way of constructing a connection for this model is to put ordinary
gauge fields into the diagonal blocks of (43) along with the even generators of
SU(2|1). If one takes the bi-grading seriously then the connection should have
total grade 1 where the total grade is the sum of the exterior form grade and of
the internal (matrix) grade. This suggestive structure invites one to fill the odd
blocks in the connection by fields which must be zero-forms (with regard to the
exterior algebra), one-forms within the algebra and, last not least, doublets with
respect to weak isospin. In other terms, one obtains an isospin doublet, scalar field
just the way the empirical SM had imposed on us. Conversely, if the Higgs field
were not a doublet, it would not fit into the connection, this whole picture would
fail.
If one then sits down and works out the Lagrangian of this model [20] one finds
the SM Lagrangian with a Higgs doublet which sits in the right (shifted) SSB
phase and a potential V (Φ) which has the correct shape. Thus, SSB is an unavoid-
able consequence of the model! Schematically and without repeating a detailed
calculation, this may be understood as follows.
Generally, representations of SU(2|1) are characterized by two quantum numbers,
I0 (denoted such because it is parent of weak isospin) and Y0 (parent of weak
hypercharge). As shown by Marcu [21] and described in a book by Scheunert [22],
the adjoint representation of SU(2|1) has the quantum numbers [I0 = 1, Y0 = 0],
and decomposes in terms of SU(2)×U(1) as follows

[I0 = 1, Y0 = 0] −→ (I = 1, Y = 0)⊕ (I = 0, Y = 0)

⊕(I = 1
2
, Y = 1)⊕ (I = 1

2
, Y = −1) . (44)

Note that this is precisely what one needs: A triplet of gauge bosons with vanishing
weak hypercharge, a singlet with vanishing hypercharge, and two doublets with
Y = ±1 for the "standard" Higgs fields!
The model also suggests more structure in the fermionic sector of the SM. In the
case of quarks, each of the three quark generations is classified by the simplest
typical representation of SU(2|1) which reads, together with its decomposition in
terms of SU(2)×U(1),[

I0 = 1
2
, Y0 = 1

3

]
−→

(I = 1
2
, Y = 1

3
)⊕ (I = 0, Y = 4

3
)⊕ (I = 0, Y = −2

3
) . (45)

Furthermore, SU(2|1) possesses reducible but indecomposable representations where
these generations are joined by semi-sums in the following way:[

I0 = 1
2
, Y0 = 1

3

]
⊃+
[
I0 = 1

2
, Y0 = 1

3

]
⊃+
[
I0 = 1

2
, Y0 = 1

3

]
. (46)

In this representation the generators have block triangular form, just like the
(lower) triangular mass matrices considered earlier, see Eq. (21).
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Likewise, one generation of leptons fits into the fundamental representation of
SU(2|1),[

I0 = 1
2
, Y0 = −1

]
→ (I = 1

2
, Y = −1)⊕ (I = 0, Y = −2) . (47)

Here again, identical representations of this kind may be joined in a semi-direct
sum analogous to (46) such as to describe the three lepton families.
It is tempting to use these reducible but indecomposable representations of SU(2|1)
for classifying leptons and quarks [19], [23]. If one does so one discovers a scheme
which does not fix absolute parameters but reveals certain textures in the mass
matrices which are in agreement with experiment.
Finally, the graded structure of the Mainz-Marseille model also fits very well with
the quantum number assignment of quarks and leptons, with the absence of anoma-
lies, and with charge quantization [24].

5 Further routes to quantization via BRST symmetry

Spontaneous symmetry breaking within the SM and its extensions remains a puz-
zle. Although the classical geometric setting for describing SSB from the original
symmetry group G to the residual symmetry H,

G −→ H ,

in relation to Goldstone’s theorem, looks convincing, it is not at all clear whether
nature has chosen this route. Here again, and in view of the forthcoming searches
at the Large Hadron Collider (LHC) it might be instructive to first consider the
present experimental situation.

5.1 General remarks on SSB and experimental information

The standard model is a renormalizable quantum field theory. Thus, it allows to
calculate radiative corrections to an impressive accuracy. However, radiative cor-
rections applied to a specific observable at a given energy scale always receive con-
tributions from other parts of the theory, including contributions from constituents
which, for kinematical reasons cannot be seen (yet) at the scales in question. A
striking example is the top-quark t whose mass was deduced from radiative cor-
rections, to a fair accuracy, before it actually was discovered. To get a feeling for
analyses of this kind let me quote a global fit to all observables within the SM
published recently by the Gfitter group [25]. Excluding the directly measured and
by now well known mass of the top from the fit, radiative corrections alone yield
mt = 178.2 +9.8

−4.2 GeV which is not far from the valuemt = 172.4±1.2 GeV obtained
from experiment.
The same fit when used to predict the Higgs mass mH , is less conclusive. There
is an experimental lower limit of the order of 114 GeV from LEP and Tevatron
experiments. If one excludes that constraint one obtains

MH = 80 +30
−23 GeV . (48)
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Figure 2: Comparing fit results with direct measurements: pull values for the complete fit (left), and results
for MH from the standard fit excluding the respective measurements from the fit (right).
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Figure 3: Determination of MH excluding all the sensitive observables from the standard fit, except for the
one given. The results shown are not independent. The information in this figure is complementary to the
one in the right hand plot of Fig. 2.

Figure 2: Pull values of observables in a complete fit to electroweak observables
(taken from [25])

The complete fit, including the mass limits, yields

MH = 116.4 +18.3
−1.3 GeV . (49)

Figure 2 shows the pull values for the complete fit, the pull value of an observable
being defined by

1

σ|meas

(O|fit − O|meas) ,

with σ|meas the error in the measurement. The hadronic asymmetry into b-quarks
yields a tendency to rather high values of the Higgs mass while the leptonic asym-
metries either agree with the overall fit or would prefer an even lower value than
that. Obviously, the situation is much less clear than it was for the top before its
discovery. This is further illustrated by the following two figures: Figure 3 shows the
results for the Higgs mass that one obtains if all sensitive observables are excluded
from the standard fit, except the one indicated. This information is complemen-
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Figure 2: Comparing fit results with direct measurements: pull values for the complete fit (left), and results
for MH from the standard fit excluding the respective measurements from the fit (right).
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Figure 3: Results for mH from standard fit excluding the respective measurements
(taken from [25])

tary to the information given in figure 4 which shows the results for mH obtained
from the standard fit but excluding the respective measurements.
Various alternatives were discussed in the literature including variations of the
minimal SM (two doublet Higgs models, or more, as well as other scenarios).

5.2 A simple model

Scharf was among the first to point out that SSB need not be based on the tra-
ditional Higgs mechanism but could be derived as a consequence of Causal Gauge
Invariance (CGI) [26]. Causal gauge invariance is a systematic method of treating
perturbative gauge theories in the framework of regularization and renormalization
developed by Epstein and Glaser [27]. Scharf developed it originally for quantum
electrodynamics [28] but it was also applied successfully to massive non-Abelian
theories [29]. The instructive example of an Abelian theory was worked out in
quite some detail in [31].
We are presently reexamining this route from various points of view [32] in a
paper that we hope to publish soon. The following simple model which is taken
from this reference, will help to understand some of the ideas which guide one in
this approach. Let ~Φ be a doublet of scalar fields, regarded as a complex singlet
Φ = v+ϕ+iB where v is a constant (a "vacuum expectation value" in the standard
picture), B is a Stückelberg field whose role is to give mass to vector bosons of the
model, and ϕ is a scalar field. The model contains a Higgs Lagrangian,

LΦ = 1
2

(∂µ + igAµ) Φ† (∂µ + igAµ) Φ + 1
2
µ2Φ†Φ− 1

4
λ
(
Φ†Φ

)2
. (50a)

As it contains a massive vector boson A whose mass is m = gv, the model needs
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Figure 4: Results for mH from standard fit excluding the respective measurements
(taken from [25])
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a gauge fixing term,

Lg.f. = −1
2
Λ
(
∂µA

µ + m
Λ
B
)2
, (50b)

where the constant Λ determines the gauge, (Λ = 1 is the Feynman gauge). Finally,
it is accompanied by a ghost Lagrangian

Lgh = (∂µũ) · sAµ − m
Λ
ũ sB ≡ L(0)

gh + L(1)
gh , (50c)

where ũ is the antighost field, s is the BRS-operator. The action of the BRS
operator on the fields of the model is

sAµ = ∂µu , (51a)
su = 0 , sũ = − (Λ∂µA

µ +mB) , (51b)
sΦ = iguΦ or sB = mu+ g uϕ , sϕ = −gBu . (51c)

The gauge fixing term can be rewritten by means of (51b),

Lgf = 1
2

(
∂µA

µ + m
Λ
B
)

(sũ) .

One then shows that s when applied to LΦ gives zero, sLΦ = 0 (Exercise 9).
Regarding the other two terms (50b) and (50c) one shows that

s (Lgf + Lgh) = ∂µ ((sũ)(sAµ))

is a total divergence (see same Exercise). The nilpotency of s is easy to check. One
has (s ◦ s) Φ = 0 while (s ◦ s) ũ vanishes for solutions of the field equations. The
field equations of the vector field A and of the Stückelberg field are seen to be(

� +m2
)
Aµ = (1− Λ)∂µ(∂νA

ν) , (52)(
� + m2

Λ

)
B = 0 . (53)

If a gauge other than the Feynman gauge is chosen, i.e. if Λ 6= 1, the mass of the
Stückelberg field is m√

Λ
. Working out the Lagrangian in terms of the field degrees

of freedom one obtains

L(0) = LYM
kin (A) + 1

2
m2AµA

µ − Λ1
2

(∂µA
µ)2 + ∂µũ ∂

µu− m2

Λ
ũu

+ 1
2

(∂µB∂
µB)− m2

2Λ
B2 + 1

2
(∂µϕ∂

µϕ)− 1
2
m2
Hϕ

2 −m∂µ (AµB) . (54)

The individual contributions to this Lagrangian are easy to identify: The first term
is the YM "kinetic" term, the second term is the mass term of the vector boson. The
third comes from the gauge fixing (50b), the fourth and fifth terms come from the
ghost Lagrangian (50c). The two contributions that follow pertain to the B-field,
followed by kinetic and mass terms of the scalar field ϕ. In a similar way one works
out the interaction terms at order g and order g2, see [32], and verifies that the
total Lagrangian is consistent with BRST-symmetry, s(L(0) + Lint) = ∂µI

µ. What
the model shows is this: The CGI-approach yields structures which look very much
alike the ad-hoc Higgs mechanism without assuming a potential with a degenerate
minimum ab initio. The BRS-symmetry is instrumental in this construction.
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6 Some conclusions and outlook

Starting from classical field theory, the basic structure of gauge theories seems
to distinguish radiation from matter as two categories which, a priori, have little
to do with each other. As soon as one enters the quantum world, however, the
distinction can no longer be maintained. Quarks and leptons are described by a
Dirac operator which, in turn, is the driving force in the construction of noncom-
mutative geometries designed to generalize Yang-Mills theory. It is not known to
which extent the realistic Dirac operator, with regard to the complexity of its
mass sectors, determines the (NC) geometry on which quantum field theories for
the fundamental interactions should be built.
The Higgs particle plays a rather enigmatic role. Its phenomenology from radiative
corrections and global fits to all observables within the standard model, is not in
a satisfactory state. Its model role of providing mass terms for some of the vector
bosons and for the fermions of the theory suggests that it be another form of
"matter". Models based on noncommutative geometry, in turn, classify the Higgs
field in the generalized Yang-Mills connection, besides the gauge bosons, and hence
declare it to be part of "radiation". So, what is it?
We worked out some of these themes, by way of construction and by means of
instructive examples. We started with a schematic description of Yang-Mills theo-
ries including spontaneous symmetry breaking (SSB) within the classical geometric
framework, and including matter particles. In a first excursion to quantum field
theory we described the stratification of the space of connections and its relevance
to anomalies. In order to clarify the phenomenological basis on which Yang-Mills
theories of fundamental interactions are built, we reviewed some of the most per-
tinent phenomenological features of leptons and of quarks. Constructions of the
standard model in the framework of noncommutative geometry were briefly sum-
marized. This, in turn lead us to a closer analysis of the mass sector and state
mixing phenomena of fermions. The intricacies of quantization were illustrated by
a semi-realistic model for massive and massless vector bosons.
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Exercises
1. What does compactness of a Lie group imply for its Killing metric? Why

must the structure group of a Yang-Mills theory be compact?

2. Within the framework of a Yang-Mills theory over Minkowski space study
the parallel transport of a scalar field by means of the connection.

3. Verify that while the action of a covariant derivative DA is not linear, the
action of D2

A is.

4. In a unitary representation of a compact simple Lie group one has

tr [U(Ti), U(Tj)] = κ δij .

Show that the constant κ depends on the representation but does not depend
on either i or j. Study the examples of spinor and triplet representations of
SU(2).

5. Let the structure group be G =SO(3). Construct a Lagrangian for the local
gauge theory whose structure group is G, and add a triplet of scalar fields
to this Lagrangian.

6. When a YM theory is based on a reductive Lie algebra one says that couplings
of matter particles to gauge fields are universal in the sense that ratios of
physical couplings within a multiplet are fixed. The aim of this exercise
is to clarify this statement. Does it hold for u(1)? So, when are couplings
universal?

7. Chirality selection rules: Consider a fermion-fermion vertex coupling to a
scalar field or to a vector field, respectively,

ψ(k)(x) (a1l + ibγ5)ψ(i)(x) ,

ψ(k)(x)γµ (a1l + ibγ5)ψ(i)(x) .

Work out the chirality selection rules at these vertices.

8. Experiment tells us that the decay π+ → e+νe has a probability which is
about 10−4 smaller than for the decay π+ → µ+νµ, even though the electron
is 207 times lighter than the muon. As the available phase space in the
electronic decay is much larger than in the muonic channel, the decay rate
for π+ → e+νe should be about five times larger than for π+ → µ+νµ. Making
use of the result of the previous exercise can you explain this discrepancy?

9. The decomposition theorem says that any nonsingular matrix M can be
written as the product of a (lower) triangular matrix T and a unitary matrix
W , M = TW . Prove this theorem by induction. Establish its relation to
the Schmidt’s orthogonalization procedure. Show that the decomposition is
unique up to multiplication of W by a diagonal unitary matrix from the left.

10. Show that the Lagrangian (54) of the toy model is BRST-invariant.
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Appendix: Proof of Relation (11a)

Let Φ = {φ(i)} be a multiplet of scalar fields (irreducible representation of SU(2))
such that

UΦ(T 2)Φ = t(t+ 1)Φ , UΦ(T3)φ(i) = t
(i)
3 φ

(i) , t
(i)
3 = −t,−t+ 1, . . . , t .

All components of Φ have the same eigenvalue t0 of the generator T0 of the U(1)
factor, UΦ(T0)φ(i) = t0φ

(i). Let V (Φ) be a quartic potential with a degenerate,
absolute minimum at some Φ0 = (φ

(1)
0 , . . . , φ

(i)
0 , . . .) which is not identically zero.

In the bosonic sector make the ansatz

A(0)
µ (x) = A(γ)

µ (x) cos θW + A(Z)
µ (x) sin θW (55a)

bA(3)
µ (x) = −A(γ)

µ (x) sin θW + A(Z)
µ (x) cos θW (55b)

Here A(0)
µ (x) and A

(3)
µ (x) are the companions of the generators T0 and T3, re-

spectively, while A(γ)
µ (x) and A(Z)

µ (x) are supposed to become the photon and the
Z0 fields, respectively. The angle θW is called the Weinberg angle. In this minimal
version it remains a free parameter and has to be determined from experiment.
The action of the connection (3a) on the scalar multiplet is

UΦ(Aµ)Φ = iq
3∑

k=0

A(k)
µ (x)UΦ(Tk)Φ (56)

= iq
{

1√
2

[
W−
µ U

Φ(T+) +W+
µ U

Φ(T−)
]

A(Z)
µ UΦ(T3 cos θW + T0 sin θW) + A(γ)

µ UΦ(−T3 sin θW + T0 cos θW)
}

Φ . (57)

Here we have replaced T1 and T2 by the ladder operators T± = T1 ± iT2.
Obviously, the factor (−T3 sin θW + T0 cos θW) which multiplies the photon field
must be proportional to the electric charge operator since only charged particles
couple to photons. Now, if Φ0 has the form Φ0 = (0, 0, . . . , φ

(i)
0 = v 6= 0, 0, . . .) this

means that the component φ(i) of Φ must be electrically neutral. The quantum
numbers of the nonvanishing component must be related by the condition

t
(i)
0 = t

(i)
3 tan θW . (58)

Another way of expressing this: Φ0 pertains to the ground state of the theory, i.e.
the vacuum. Only electrically neutral fields can develop a nonvanishing vacuum
expectation value v 6= 0.
Possible mass terms for the vector bosons originate from the scalar product(

UΦ(Aµ)Φ0, U
Φ(Aµ)Φ0

)
. (59)

Form here on it is straightforward to compute the term (59) and to isolate the
mass terms of W± and Z0. Making use of the identity T+T−+T−T+ = 2(~T 2−T 2

3 )
and inserting (58) one obtains(

UΦ(Aµ)Φ0, U
Φ(Aµ)Φ0

)
= q2v2

{[
t(t+ 1)− (t

(i)
3 )2

]
W−
µ W

+µ +
1

cos2 θW

(t
(i)
3 )2A(Z)

µ A(Z)µ

}
. (60)
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One reads off the masses of W± and Z0 from (6). They are proportional to

m2
W ∝

1

2
q2v2

[
t(t+ 1)− (t

(i)
3 )2

]
, (61a)

m2
Z ∝ q2v2 cos−2 θW(t

(i)
3 )2 . (61b)

As the constant of proportionality is the same for both, the ratio (11a) follows
from these equations.
From this derivation one sees very clearly that there is little that restricts the
choice of the multiplet for Φ. The only condition is that Φ have one component
which is electrically neutral.
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