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Abstract. In the hyperradial adiabatic (HA) treatment of the three-body problem the total wave function is
expanded asΨHA(R, ξ, η) = R−5/2 ∑

i χi(R)ϕi(R|ξ, η),whereR denotes the hyperradius and (ξ, η) are internal hy-
perangles. Integration overξ andη converts the Schrödinger equation into a system of coupled hyperradial equa-
tions. It is a well-known fact that, within theHA approach, the non-adiabatic corrections that couple channels
converging to the same asymptotic configuration can show an unphysical long-range behavior∼ 1/R. Though
the latter is of purely kinematic origin and arises from the use of the hyperradius instead of the pertinent Jacobi
variables, it is nevertheless the source of the considerable difficulties inherent in this approach. Here we propose,
following the analysis of [1,2], to define appropriate hyperradial-distorted free incoming and outgoing waves
(HDFW) that incorporate these unphysical long-range effects. Using them the physicalS−matrix can be found
in a straightforward manner.

1 Introduction

The standard approach to nonrelativistic scattering consists
in solving the Schr̈odinger equation and comparing its so-
lution with that of the corresponding free equation (incom-
ing and outgoing plane or spherical waves, respectively).
This allows extraction of theS−matrix and with it the in-
terpretation of experimental data.

As is well known such a straightforward procedure is
ill-suited if long-range correlations are present. One way
out consists in taking resort to a distorted-wave picture.
Herein, the intended comparison is made with the solu-
tion, not of the free, but of an appropriate ”distorted-free”
Schr̈odinger equation. In order that this approach be of
practical use the latter must take care of the undesired long-
range correlations, and its solution must either be analyti-
cally known or at least be easily calculable.

In the hyperradial adiabatic treatment of the three-body
problem the hyperradiusR and two internal hyperangles
(ξ, η) are chosen as the basic variables. Then the total wave
function is expanded as

ΨHA(R, ξ, η) = R−5/2
N∑

i

χi(R)ϕi(R|ξ, η). (1)

After integration overξ andη one arrives at a system of
coupled hyperradial equations which in matrix form reads
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as
[
− 1

2M
d2

dR2
1 + ε(R) + 2Q(R)

d
dR + W(R)

]
χ(R) = Eχ(R).

(2)
The elements of the matricesQ(R) and W(R) that con-
stitute the so-called non-adiabatic corrections are given as
usual by

Qi j (R) = − 1
2M

〈
ϕi(R|ξ, η)

∣∣∣∣∣
d

dRϕ j(R|ξ, η)
〉

(3)

and

Wi j (R) = − 1
2M

〈
ϕi(R|ξ, η)

∣∣∣∣∣∣
d2

dR2
ϕ j(R|ξ, η)

〉
. (4)

Moreover,ε(R) denotes the diagonal matrix of the adia-
batic eigenvalues andχ(R) the column vector solution. It
is a wellknown fact that, within theHA approach, the non-
adiabatic corrections that couple channels converging to
the same asymptotic configuration can show an unphysi-
cal long-range behavior∼ 1/R [1–3]. Its occurrence is a
purely kinematic effect, arising from the use of the hyper-
radius instead of the appropriate Jacobi variables.

Traditionally the asymptotic form of the scattering so-
lution of (2) is then searched in the form [4,5]

χ(R) ∼
[
e−iKR1− eiKRS

]
B, for R → ∞, (5)

yielding the S-matrixS (B represents suitable normaliza-
tion factors). Because of the above mentioned long-range
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correlations such a procedure represents, however, an ill-
posed problem and is the origin of the considerable diffi-
culties encountered in practical applications.

To enhance the usefulness of this approach we propose
the following strategy which is inspired by the classical
distorted-wave picture outlined at the beginning of the sec-
tion.

– First find an appropriate auxiliary (”distorted-free”)
scattering equation corresponding to (2) but with
the property that its solutions account for the long-
range correlations and are readily accessible.

– When the full equation (2) is solved subsequently,
in order to define the physical S−matrix the asymp-
totic comparison is then made with the solutions
of the above auxiliary equation instead of with the
standard incoming and outgoing spherical waves as
in (5).

In more detail, following the analysis of [1,2], we first
have to find from the auxiliary scattering equation so-called
hyperradial-distorted free incoming and outgoing waves

e−iKRS̄−1/2 and eiKRS̄1/2 (6)

(see below) that incorporate the above mentioned unphys-
ical long-range effects and include an auxiliary scattering
matrix S̄. The latter then allows to calculate the physical
scattering matrixS as

S = S̄−1/2SS̄−1/2
, (7)

which can strongly differ from the standardS−matrix (5).
Thus, in a first step a procedure to define and then to

calculate the auxiliary S-matrix̄Shas to be outlined.

2 Hyperspheroidal Hamiltonian

We consider three charged particles having massesmi , po-
sition vectorsxi , (i = 1,2,3), and chargesZ1Z2 > 0,Z1Z3 <
0. Unitsµ = e = ~ = 1 are chosen. Introduction of the fa-
miliar prolate spheroidal coordinatesξ ∈ [1,∞) andη ∈
[−1,1], defined by

r1 = R(ξ + η)/2, r2 = R(ξ − η)/2, (8)

with

R = |x2 − x3|, r1 = |x1 − x3|, r2 = |x2 − x3|, (9)

and of the hyperradius

R = R
√
ρ(ξ, η) = R

√
1 + (r/R)2µ/M (10)

yields (for non-rotational states) the hyperradial Hamilto-
nian depending on three variables

H = h(R|ξ, η) − 1
2M

1
R5

∂

∂RR
5 ∂

∂R , (11)

h(R|ξ, η) = −ρ
2(ξ, η)
2µR2

â +
√
ρ(ξ, η)V(R|ξ, η), (12)

V(R|ξ, η) =
1
R

[
Z1Z2 − 2Z1Z3

ξ + η
− 2Z2Z3

ξ − η
]
. (13)

The volume element isdτ = (ξ2 − η2)dξdη/ρ2(ξ, η). Here,
the following abbreviations have been used:

â =
1

ξ2 − η2

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+
∂

∂η
(1− η2)

∂

∂η

]
,

q̂ =
1

ξ2 − η2

[
(ξ − κη)(ξ2 − 1)

∂

∂ξ
+ (η − κξ)(1− η2)

∂

∂η

]
,

(14)
ρ(ξ, η) = 1 + α̃(ξ2 + η2 − 2κξη + κ2 − 1),
α̃ = µ/(4M),
κ = (m2 −m1)/(m2 + m1),
1/M = 1/m1 + 1/m2,
1/µ = 1/m3 + 1/(m1 + m2).

(15)

The hyperradial adiabatic eigenvalue equation

h(R|ξ, η)ϕi(R|ξ, η) = εi(R)ϕi(R|ξ, η) (16)

can be interpreted as describing the motion of a quasi-
particle with massµ/ρ2(ξ, η) in a renormalised interaction
potential

√
ρ(ξ, η)V (cf. (12)). As indicated, the hamilto-

nian h(R|ξ, η) depends parametrically on the hyperradius
R resulting in a 1/R−behavior of the eigenvaluesεi(R)
for largeR, a fact established both numerically and ana-
lytically [3]. Moreover, asR tends to infinity implying the
disintegration of the system into atom plus nucleus,ρ(ξ, η)
approaches appropriate constant values such that the spec-
tra with the proper values of the atomic energies are recov-
ered.

3 Asymptotic behavior

In order to assess the efficiency of theHA approach it is of
importance study the asymptotic behavior of the various
quantities occurring in (2) for largeR [3] (in contrast to
the opinion advanced in [7]). This is illustrated in detail at
the example of the specific physical three-charged particle
system consisting of antiproton, electron and proton in Fig.
1 (see also [8]). There we show our calculated hyperradial-
adiabatic potentialε11(R) (i.e., the 11-th eigenvalue) and
the corresponding effective potentialε11(R) + W11,11(R)
which includes the diagonal nonadiabatic corrections, cf.
(4).

Indeed, both curves tend asymptotically to the proper
energy level of antiprotonium (pp̄)n=5. But the speed of
approach is dramatically different. The reason is that while
ε11(R) clearly displays the unphysical attractive 1/R−like
tail the latter is, however, for a large region ofR-values
compensated with sufficient accuracy by that of the diago-
nal matrix elementW11,11(R) of the non-adiabatic correc-
tions. Obviously, for this particular system the size of the
corrections is substantial and is thus expected to strongly
influence the convergence rate of the scattering observ-
ables (see, e.g. [5]). But it is important to keep in mind
the established fact that, within theHA approach, also non-
diagonal corrections that couple channels converging to the
same configuration but containing different states of the
atom can show a similar long-range behavior∼ O(1/R).
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Fig. 1. Lowest adiabatic potential of the (n=5)-subset without
(”adiabatic”) and with (”effective”) nonadiabatic correction. Both
curves approach the proper energy of the (pp̄) atom (in units
µ = 1), shown as a horizontal line, but at distictly different values
of the hyperradiusR.

4 Example of hyperradius-distorted free
waves (HDFW)

In order to enhance the convergence and to minimize the
range ofR that should be used in the numerical solution of
the hyperradial scattering equation (2), the following ro-
bust procedure is suggested.

To be specific consider the physical reaction

(dµ−)1s + t → (tµ−)1s + d, (17)

which has been thoroughly investigated in earlier days, see
e.g. [4–6]. The asymptotic form of the solution of (2), if
searched in the traditional way according to (5), includes
the standard incoming (exp{−iKR}) and outgoing (exp{iKR})
spherical waves and anS−matrix S (together with a col-
umn matrixB of arbitrary coefficients). Clearly, the S-matrix
defined in this way must be expected to be rather sensitive
to the long-range kinematic effects introduced by using the
hyperradius instead of the appropriate Jacobi variables.

This fact suggests to first solve two auxiliaryHA prob-
lems that physically represent the motion of the correspond-
ing atoms with respect to a neutral ”particle” with mass of
the remaining third particle, namely

(dµ−)1s + mt → (dµ−)1s + mt (18)

with
V = Vdµ− ,Vdt = Vtµ− = 0,

and
(tµ−)1s + md → (tµ−)1s + md (19)

with
V = Vtµ− ,Vdt = Vdµ− = 0.

These processes are trivial in the appropriate Jacobi vari-
ables since the corresponding wave functions are just prod-
ucts of hydrogen-like functions and plane waves. But when
studied in theHA approach they suffer from the same kine-
matic inadequacy as the original reaction (17).

For these two reactions theHA ansatz (1) leads to a
system of equations similar to (2). Asymptotically the so-
lution for the reaction (18) behaves as

χdµ− (R) ∼
[
e−iKR − eiKRSdµ−

]
Bdµ− , for R → ∞, (20)

and for (19) as

χtµ− (R) ∼
[
e−iKR − eiKRStµ−

]
Btµ− , for R → ∞. (21)

As was demonstrated in [1], the ”eigenvalues” and ”non-
adiabatic corrections” for these auxiliary reactions closely
resemble those of the physical problem (17) and, what is
to be particularly stressed here, the large-R behavior of the
corresponding matricesQdµ− ,Qtµ− ,Wdµ− , andWtµ− repro-
duces that for the corresponding quantities of the original
physical problem (17). That is, in theHA approach these
two free-motion problems look like a multichannel scat-
tering problem where two different fragmentation channels
are described using the same hyperradiusR.

Thus, the basic idea is to construct incoming and out-
going spherical waves that produce a unit S-matrix for the
auxiliary problems shown above, and use them in the phys-
ical problem (17). In a first step we combine the solutions
χdµ− andχtµ− into a common wave function, taking care of
the energetic ordering of the asymptotic states,

χ̄ =

(
χdµ−

χtµ−

)
, (22)

which asymptotically behaves as

χ̄(R) ∼
[
e−iKR1− eiKRS̄

]
A, (23)

with the S-matrix

S̄ =

(
Sdµ− 0

0 Stµ−

)
. (24)

Let us rewrite (23) as

χ̄(R) ∼
[
e−iKRS̄−1/2 − eiKRS̄1/2] S̄1/2A (25)

=:
[
χ̄(−)(R) − χ̄(+)(R)

]
Ā. (26)

Then all unphysical couplings inherent in theHA approach
are seen to have been incorporated in the distorted incom-
ing and outgoing waves̄χ(−)(R) andχ̄(+)(R). We call them
hyperradius-distorted free waves (HDFW), cf. ( 6). And
we have arrived at a unit S-matrix as required for physical
reasons.

5 Definition of the physical S-matrix

For the physical problem (17) we rewrite the asymptotic
solution (5), introducing now the hyperradius-distorted free
wavesχ̄(±), as

χ(R) ∼ [e−iKRS̄−1/2S̄1/2 − eiKRS̄1/2S̄−1/2S]B
= [χ̄(−)(R)S̄1/2 − χ̄(+)(R)S̄−1/2S]B
= [χ̄(−)(R) − χ̄(+)(R)S̄−1/2SS̄−1/2]S̄−1/2B
=: [χ̄(−)(R) − χ̄(+)(R)S]B̄,

(27)

so that for the physical scattering matrixS we find the re-
sult (7).
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Table 1.Elastic cross-section (in units of 10−20cm2) for (dµ−)1s +

t → (tµ−)1s + d collisions. The center-of-mass incident energy is
E = 10−2 eV . Various two-state approximations are compared.

Elastic cross-section

BA [6] 2.13
HDFW (7) 2.21
HA [5] 2.39

The advantage of such an approach is evident: all un-
physical long-range effects of theHA approach have been
incorporated in the similar but numerically much simpler
auxiliary problems (18) and (19). Consequently, the phys-
ical values of scattering observables for the interesting re-
action (17) are expected to be reached at much lower val-
ues of the hyperradius than in the original version of the
method which is, of course, a very desirable feature.

This expectation is borne out by calculations of the
elastic cross-section for the reaction (17) for the energy
E = 10−2 eV. In Table 1 we compare three available two-
state results. The best adiabatic (BA) calculations of [6]
utilized an adiabatic expansion in which molecular states
are constructed in (appropriate) Jacobi coordinates. Our re-
sult (second line of the Table 1) demonstrates the notice-
able improvement over the traditionalHA approach (third
line of the Table 1). We mention that the multi-stateHA
approximation of [5] produced the value 2.15× 10−20cm2.

6 Conclusions

The hyperradial-adiabatic approach is extensively used in
solving various three body scattering problems, see for ex-
ample [4,5]. Though convergence of the scattering results
is usually claimed, it is not always as clear-cut as desir-
able. Here we propose for the first time to substitute the
traditional way of calculating the scattering matrix using
(5) by the following more elaborate but much more reli-
ably looking procedure:

– As a first step solve the appropriate hyperradial-
distorted free scattering equation yielding the aux-
iliary S-matrix S̄.

– After that the conventional scattering matrix S is to
be calculated using (5).

– The true physical scattering matrixS is then found
via expression (7).

We mention that a related problem arises in the Born-
Oppenheimer (BO) adiabatic approximation. In [9] bound-
ary conditions for the radial multichannel Schrödinger equa-
tion were discussed, with the suggestion that the corre-
sponding scattering theory ”requires serious investigation”.
The reason for this warning is that here some matrix el-
ements of the non-adiabatic couplings asymptotically ap-
proach even non-zero constant values. Clearly standard scat-
tering theory is not applicable in such a case since free-
motion states can not be introduced.

In contrast, in theHA approach matrix elements of
the nonadiabatic corrections (3) and (4) and the adiabatic

eigenvaluesε i(R) may behave asymptotically like 1/R. This
at least allows one to follow the distorted-wave strategy of
formal scattering theory presented here, which is distinctly
different from the usual practice [4,5]. A first application
has now been provided for the physical problem (17).

Here it should be noted that the matrix elements of an-
gular couplings which are not discussed here are of a sim-
ilarly long range, both inHA and in theBO approaches,
i.e., untractable by conventional methods. In [2] we dis-
cuss two methods of how to circumvent this problem and
give references.

In conclusion we expect that theHA approach, sup-
plemented with the elimination of long-range parts of the
unphysical couplings along the lines developed in this pa-
per, i.e., usingHDFW, will turn out to be rather effective.
The numerical example from the previous section supports
this conjecture.

Finally, we note the following two features of our main
result (7)

S = S̄−1/2SS̄−1/2 :

– If the system of coupled hyperradial equations (2)
is not large enough, bothS and S represent for the
same numberN of equations different approxima-
tions.

– On the other hand, if N is so large as to yield a con-
verged physical S−matrix, the auxiliary matrix S̄
will approximately reduce to a unit matrix, result-
ing in

S ≈ S.

Thus, a result̄S ≈ 1 provides an easily obtainable inde-
pendent and critical check of the convergence of the cal-
culated scattering observables with respect to the number
N of states taken into account, without having to solve the
full physical scattering equation (2).
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